A Novel Multi-Source Domain Adaptation Method with Dempster–Shafer Evidence Theory for Cross-Domain Classification

نویسندگان

چکیده

In this era of big data, Multi-source Domain Adaptation (MDA) becomes more and popular is employed to make full use available source data collected from several different, but related domains. Although multiple domains provide much information, the processing domain shifts challenging, especially in learning a common domain-invariant representation for all Moreover, it counter-intuitive treat equally as most existing MDA algorithms do. Therefore, domain-specific distribution each source–target pair aligned, respectively. Nevertheless, hard combine adaptation outputs different classifiers effectively, because ambiguity on category boundary. Subjective Logic (SL) introduced measure uncertainty (credibility) classifier, so that could be bridged with DST. Due advantage information fusion, Dempster–Shafer evidence Theory (DST) utilized reduce boundary output reasonable decisions by combining based uncertainty. Finally, extensive comparative experiments three benchmark datasets cross-domain image classification are conducted evaluate performance proposed method via various aspects.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Multi-Source Iterative Adaptation for Cross-Domain Classification

Owing to the tremendous increase in the volume and variety of user generated content, train–once– apply–forever models are insufficient for supervised learning tasks. Thus, developing algorithms that adapt across domains by leveraging data from multiple domains is critical. However, existing adaptation algorithms often fail to identify the right sources to use for adaptation. In this work, we p...

متن کامل

A Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique

In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...

متن کامل

A survey of multi-source domain adaptation

In many machine learning algorithms, a major assumption is that the training and the test samples are in the same feature space and have the same distribution. However, for many real applications this assumption does not hold. In this paper, we survey the problem where the training samples and the test samples are from different distributions. This problem can be referred as domain adaptation. ...

متن کامل

Multi-Source Domain Adaptation: A Causal View

This paper is concerned with the problem of domain adaptation with multiple sources from a causal point of view. In particular, we use causal models to represent the relationship between the features X and class label Y , and consider possible situations where different modules of the causal model change with the domain. In each situation, we investigate what knowledge is appropriate to transfe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10152797